Quasi-Maximum Likelihood Estimation For Latent Variable Models With Mixed Continuous And Polytomous Data
نویسنده
چکیده
منابع مشابه
Local Influence Analysis of Two-level Latent Variable Models with Continuous and Polytomous Data
A latent variable model is proposed to analyze two-level data with hierarchical structure and mixed continuous and polytomous data that are very common in behavioral, biomedical and social research. On the basis of an EM algorithm associated with the maximum likelihood estimation of the model, a method is developed for assessing local influence of minor perturbation for the proposed latent vari...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کامل%lrasch mml: A SAS Macro for Marginal Maximum Likelihood Estimation in Longitudinal Polytomous Rasch Models
Item response theory models are often applied when a number items are used to measure a unidimensional latent variable. Originally proposed and used within educational research, they are also used when focus is on physical functioning or psychological wellbeing. Modern applications often need more general models, typically models for multidimensional latent variables or longitudinal models for ...
متن کاملEstimation of Models in a Rasch Family for Polytomous Items and Multiple Latent Variables
The Rasch family of models considered in this paper includes models for polytomous items and multiple correlated latent traits, as well as for dichotomous items and a single latent variable. An R package is described that computes estimates of parameters and robust standard errors of a class of log-linear-by-linear association (LLLA) models, which are derived from a Rasch family of models. The ...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کامل